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A hitherto unavailable analytical solution to the boundary-value problem of the free
vibration response of shear-flexible antisymmetric cross-ply laminated cylindrical panels is
presented. The laminated shell theory formulation is based on the first order shear
deformation theory (FSDT) including rotatory and surface-parallel inertias. The governing
equations of the panel are defined by five highly coupled partial differential equations in
five unknowns}three displacements, and two rotations. The assumed solution functions
for the eigen/boundary-value problem are selected in terms of mixed-type double Fourier
series. Numerical results presented for parametric effects, such as length-to-thickness ratio
and radius-to-thickness ratio, should serve as a bench mark for future comparison. A four-
node shear-flexible finite element is selected to compare the results with the present
solution.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Free vibration response analysis of laminated circular cylindrical panels (open shallow shells
used in aircraft fuselages, wings, boats, etc.), fabricated with fiber-reinforced laminated
composite materials such as glass/epoxy, graphite/epoxy, graphite/graphite, boron/epoxy,
Kevlar-49/epoxy, etc., are of current interest because of their increasing use in aerospace,
hydrospace, energy, chemical, and other industrial applications [1]. A variety of factors, such
as high strength-to-weight and stiffness-to-weight ratios (resulting in fuel economy), corrosion
resistance, longer fatigue life and stealth characteristics (of military aircraft, e.g., stealth
fighter, F117A) are responsible for increased usage of fiber-reinforced composite laminates in
aerospace structural applications. A more recent advancement in composites in the
commercial aircraft sector, e.g., all-composite empennages on the Boeing 7J7 and Douglas
MD-91X, is to limit sonic fatigue caused by the new fuel-efficient propfan or unducted fan
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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(UDF) engines. All these advancements and design requirements place a premium on an in-
depth understanding of the response characteristics of such structural components. The
present study is intended to capture some of these intricacies of the dynamic response of
laminated composite structural components through analysis of a model problem } a
moderately thick antisymmetric cross-ply laminated cylindrical panel. Analysis of moderately
thick panels are, in general, based on the first order shear deformation theory (FSDT).

Typically, laminated composite structures are analyzed using approximate numerical
techniques, such as finite element methods (FEM) and boundary element methods (BEM),
the accuracy of which is usually ascertained by comparing with certain bench-mark
analytical (or strong form of) solutions. Derivation of analytical (e.g., Fourier series)
solutions for the problems of laminated curved panels fabricated with such advanced
composite materials as graphite/epoxy, boron/epoxy, graphite/PEEK, etc., is, however,
fraught with some complexities, such as asymmetry of lamination (resulting in bending–
stretching coupling), effect of transverse shear deformation (caused by low transverse
shear modulus-to-surface-parallel Young’s modulus ratio), and curvature effect. Addi-
tional complexities arise by way of satisfying boundary conditions, that cannot be handled
by traditional analytical approaches, such as the almost two centuries-old Navier’s and
close to a century-old Levy’s approaches [2].

A detailed review of the literature pertaining to the subject matter of the present study is
already available in recent publications, e.g., references [3–11], and will not be repeated
here in the interest of brevity of presentation. An in-depth review of this literature reveals
that the solution to the problem of free vibration of antisymmetric cross-ply moderately
thick cylindrically curved panels, with general type admissible boundary conditions
prescribed at the edges, is still non-existent in the literature, which is the subject matter of
the present investigation. Additionally, the boundary discontinuous double Fourier series
technique employed so far in the analysis of cylindrical and doubly curved panels [4, 6, 8]
is based on the approach due to Chaudhuri [2]. This approach recommends that the
assumed solution for a cross-ply panel should require only a single set of Fourier series for
each displacement and rotation component. It may be noted here that although Fourier
series expansion is, in theory, a valid approach to derive the Green’s function for a
boundary-value problem, in practice, the convergence is not uniform and very slow
because the Green’s function has a singularity. For example, the Green’s function for two-
dimensional Laplace’s equation has a logarithmic singularity, which obviously cannot be
evaluated accurately enough by any reasonably small finite sum in the double Fourier
series [12]. Acceleration of convergence has been a major theme of research during the last
several decades, especially in the Russian literature on the subject [12]. The primary
objective of the present investigation is to find a novel way to achieve this accelerated
convergence, which has so far eluded researchers in this field. Inclusion of a second series,
which is orthogonal to the first, in the assumed solution is a novel idea that is yet to be
explored. Additionally, we have computed hitherto unavailable numerical results for an
important laminated shell boundary-value problem. In what follows, the afore-mentioned
novel idea is implemented in the investigation of the model problem pertaining to the
frequency response of an antisymmetric cross-ply moderately thick cylindrical panel
subjected to the SS2 (see, e.g., reference [8] for definition) type simply supported boundary
condition in order to obtain a more rapid convergence.

2. BASIC EQUATIONS

A laminated cylindrical panel of total thickness, h, is shown in Figure 1. The thickness
of the kth layer is denoted by tðkÞ ¼ ak

3 � ak�1
3 ; in which aðkÞ3 and aðk�1Þ

3 ; k¼ 1; 2; . . . ; N; are



Figure 1. A typical cylindrical panel.
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the distances from the reference surface to the outer and inner faces, respectively, of the
layer measured from the mid-depth of the panel. An orthogonal curvilinear co-ordinate
system is selected to define the geometry of the panel. The co-ordinate system is placed at
the mid-height of the panel thickness. The curvilinear co-ordinates a1; a2 define the
reference surface (a3 ¼ 0) of the panel. The spans a and b are measured along the axes a1

and a2; respectively, while R denotes the radius of the reference surface (see Figure 1). The
equations of motion, based on the Sanders [13] moderately deep shell theory, can be
written as:

@N1

@a1
þ @N6

@a2
þ 1

2R

@M6

@a2
þ Q1

R
¼ m1; ð1aÞ

@N6

@a1
� 1

2R

@M6

@a1
þ @N2

@a2
¼ m2; ð1bÞ

@Q1

@a1
þ @Q2

@a2
� N1

R
¼ m3; ð1cÞ

@M1

@a1
þ @M6

@a2
� Q1 ¼ m4;

@M6

@a1
þ @M2

@a2
� Q2 ¼ m5; ð1d; eÞ

where N1; N2; and N6 are the surface parallel stress resultants, while M1; M2 and M6 are
stress couples or moment resultants, and Q1 and Q2 represent the transverse shear stress
resultants, all per unit length. The inertias mi (i=1, . . ., 5) are defined as:

m1 ¼ r1 þ
2r2

R

� �
@2u1

@t2
þ r2 þ

2r3

R

� �
@2f1

@t2
; ð2aÞ

m2 ¼ r1

@2u2

@t2
þ r2

@2f2

@t2
; m3 ¼ r1

@2u3

@t2
; ð2b; cÞ

m4 ¼ r2 þ
r3

R

� �@2u2

@t2
þ r3

@2f1

@t2
; m5 ¼ r2

@2u2

@t2
þ r3

@2f2

@t2
; ð2d; eÞ

in which both the surface-parallel and rotatory inertias are included. ui (i=1, 2, 3)
represents the displacement components at the reference surface along ai (i=1, 2, 3) axes,
while fi (i=1, 2) refers to rotations of the normal about ai (i=1, 2) axes. Finally, the
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weighted averaged density ri (i=1, 2, 3) is defined as

ðr1; r2; r3Þ ¼
XN

k¼1

Z aðkÞ
3

aðk�1Þ
3

rðkÞð1; a3; a2
3Þ da3; ð3Þ

where rðkÞ and N represent the density of the kth layer material, and the total number of
layers respectively. For a general cross-ply laminated panel, surface-parallel stress
resultants, Ni, i=1, 2, 6, stress couples, Mi, i=1, 2, 6, and the transverse shear stress
resultants, Qi, i=1, 2, are related to the mid-surface strains, e0i ; and changes of curvature
and twist, ki; by

Ni ¼ Aije0j þ Bijki; ði; j ¼ 1; 2Þ; ð4aÞ

N6 ¼ A66e06 þ B66k6; ð4bÞ

Mi ¼ Bije0j þ Dijkj; ði; j ¼ 1; 2Þ; ð4cÞ

M6 ¼ B66k6 þ D66k6; ð4dÞ

Q1 ¼ A55e05; Q2 ¼ A44e04; ð4e; fÞ

with

A55 ¼ K2
1A�

55; A44 ¼ K2
2 A�

44; ð5Þ

where Aij, Bij, and Dij, i, j=1, 2, 6, are extensional, coupling, and bending rigidities
respectively. A�

44 and A�
55 represent transverse shear rigidities, while K2

1 and K2
2 are shear

correction factors e0j ( j=1, 2, 4, 5, 6) and kj ( j=1, 2, 6) are related to displacement
components and their derivatives, as defined by Sanders [12], and are given as

e01 ¼ u1; 1 þ
u3

R1
; e02 ¼ u2; 2; ð6a; bÞ

e04 ¼ u3; 2 þ f2; e05 ¼ u3; 1 þ f1; e06 ¼ u2; 1 þ u1; 2; ð6c2eÞ

k1 ¼ f1; 1; k2 ¼ f2;2; k6 ¼ f2; 1 þ f1; 2 þ
1

2R
u2; 1 � u1; 2

� �
: ð6f2hÞ

Substitution of equations (4)–(6) into equations (1) yields five highly coupled partial
differential equations with constant coefficients. These equations can be written in a
differential operator matrix form as

Tv ¼ f; ð7Þ

where

Tij ¼ Tji; i; j ¼ 1; . . . ; 5; ð8aÞ

vT ¼ fu1; u2; u3; f1; f2g; fT ¼ fm1; m2; m3; m4; m5g: ð8b; cÞ



CROSS-PLY CYLINDRICAL PANEL 813
The components of the differential operator Tij can be written as:

T11 ¼ � A55

R2
ð Þ þ A12ð Þ;a1a1

þ A66 þ
2

R
B66 þ

1

R2
D66

� �
ð Þ;a2a2

; ð9aÞ

T12 ¼ A12 þ A66 �
1

R2
D66

� �
ð Þ;a1a2

; ð9bÞ

T13 ¼
A11

R
þ A55

R

� �
ð Þ;a1a2

; ð9cÞ

T14 ¼ � A55

R
ð Þ þ B11ð Þ;a1a1

þ B66 þ
1

R
D66

� �
ð Þ;a1a2

; ð9dÞ

T15 ¼ B12 þ B66 �
1

R
D66

� �
ð Þ;a1a2

; ð9eÞ

T22 ¼ A66 �
2

R
B66 þ

1

R2
D66

� �
ð Þ;a1a2

; ð9fÞ

T23 ¼
A12

R
ð Þ;a2

; T24 ¼ B12 þ B66 �
1

R
D66

� �
ð Þ;a1a2

; ð9g; hÞ

T25 ¼ B66 �
1

R
D66

� �
ð Þ;a1a2

; ð9iÞ

T33 ¼
A11

R2
ð Þ þ A55ð Þ;a1a2

þ A44ð Þ;a2a2
; ð9jÞ

T34 ¼ A55 �
B11

R

� �
ð Þ;a1

; T35 ¼ A44 �
B12

R

� �
ð Þ;a2

; ð9k; lÞ

T44 ¼ A55ð Þ þ D11ð Þ;a1a1
þ D66ð Þ;a2a2

; ð9mÞ

T45 ¼ ðD12 þ D66Þð Þ;a1a2
; ð9nÞ

T55 ¼ �A44ð Þ þ D66ð Þ;a1a1
þ D22ð Þ;a2a2

: ð9oÞ

An admissible simply supported boundary condition, generally referred to as SS2 [8], is
chosen to illustrate the present solution procedure. This is of the following form:

un ¼ Nt ¼ u3 ¼ Mn ¼ ft ¼ 0; ð10a2eÞ

where, n and t denote normal and tangential components of displacement, stress resultant
and stress couple vectors in reference to the edges [8] respectively. The main objective here
is to solve the system of partial differential equations, given by equations (7)–(9) subjected
to the boundary conditions, given by equations (10).

3. SOLUTION TO THE BOUNDARY-VALUE PROBLEM

The assumed solution functions for the boundary-value problem of a finite dimensional
cross-ply laminated cylindrical panel are selected in terms of double Fourier series in the
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following form:

u1ða1; a2; tÞ ¼
X1
m¼0

X1
n¼1

1CI
mn cos

mpa1

a

� �
sin

mpa2

b

� �
eiot

þ
X1
m¼0

X1
n¼1

2CI
mn sin

mpa1

a

� �
cos

mpa2

b

� �
eiot; ð11aÞ

u2ða1; a2; tÞ ¼
X1
m¼0

X1
n¼1

1CII
mn sin

mpa1

a

� �
cos

mpa2

b

� �
eiot

þ
X1
m¼0

X1
n¼1

2CII
mn cos

mpa1

a

� �
sin

mpa2

b

� �
eiot; ð11bÞ

u3ða1; a2; tÞ ¼
X1
m¼1

X1
n¼1

1CIII
mn sin

mpa1

a

� �
sin

mpa2

b

� �
eiot

þ
X1
m¼0

X1
n¼0

2CIII
mn cos

mpa1

a

� �
cos

mpa2

b

� �
eiot; ð11cÞ

f1ða1; a2; tÞ ¼
X1
m¼0

X1
n¼1

1CIV
mn cos

mpa1

a

� �
sin

mpa2

b

� �
eiot

þ
X1
m¼1

X1
n¼0

2CIV
mn sin

mpa1

a

� �
cos

mpa2

b

� �
eiot; ð11dÞ

f2ða1; a2; tÞ ¼
X1
m¼1

X1
n¼0

1CV
mn sin

mpa1

a

� �
cos

mpa2

b

� �
eiot

þ
X1
m¼0

X1
n¼1

2CV
mn cos

mpa1

a

� �
sin

mpa2

b

� �
eiot; ð11eÞ

where jCi
mn (i=I, . . ., V; j=1,. . ., 2) represents the Fourier coefficients.

It is quite interesting to note that the first of each set of assumed solution functions in
equations (11) is sufficient for solving the boundary-value problem under investigation
[2, 8]. However, it is well known from the theory of Fourier series that the rate of
convergence becomes less rapid in the presence of discontinuities in the function or its first
(normal) derivative. In order to alleviate this difficulty, each unknown is expressed in
terms of two double Fourier series in which the second set is orthogonal to the first, and
represents the error term that may arise out of the presence of discontinuity in the function
or its first derivative at the boundary. This is believed to produce accelerated convergence
of the series solution.

In order to illustrate the above, the assumed solution function for u1 is considered:

u1ða1; a2; tÞ ¼1u1ða1; a2; tÞ þ2u1ða1; a2; tÞ; ð12Þ

where

1u1ða1; a2; tÞ ¼
X1
m¼0

X1
n¼1

1CI
mn cos

mpa1

a

� �
sin

mpa2

b

� �
eiot; not valid at @O ð13aÞ
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and

2u1ða1; a2; tÞ ¼
X1
m¼1

X1
n¼0

2CI
mnsin

mpa1

a

� �
cos

mpa2

b

� �
eiot valid at @O; ð13bÞ

where @O represents the boundaries.
Since 1u1ða1; a2; tÞ; given by equation (13a), does not satisfy the boundary conditions at

a1¼ ð0; aÞ; it is forced to satisfy these, which results in 2n algebraic equations:

X1
m¼1

W ð1Þ
m

1CI
mn ¼ 0; 1CI

0n þ
X1
m¼1

W ð2Þ
m

1CI
mn ¼ 0; ð14a; bÞ

where W
ð1Þ
m and W

ð2Þ
m are defined as

W ð1Þ
m ; W ð2Þ

m

� �
¼

ð0; 1Þ; m ¼ odd;

ð1; 0Þ; m¼ even:

(
ð15Þ

The above operation paves the way for term-by-term differentiation. Therefore,

1u1;1ða1; a2; tÞ ¼ �
X1
m¼1

X1
n¼1

mp
a

1CI
mnsin

mpa1

a

� �
sin

mpa2

b

� �
eiot; 05a15a; 05a25b:

ð16Þ

Further term-by-term differentiation is, however, not possible due to the presence of
discontinuity at the boundaries at a1 ¼ ð0; aÞ: 1u1;11 is then expanded in the following
form:

1u1;1 1ða1; a2; tÞ ¼ 1

2

X1
n¼1

a1111
nð1Þ sin

npa2

b

� �
eiot

h

þ
X1
m¼1

X1
n¼1

m2p2

a2
1CI

mn þ W ð1Þ
m a1111

nð1Þ þ W ð2Þ
m a1111

nð2Þ

� �
cos

mpa1

a

� �
sin

mpa2

b

� �
eiot:

ð17Þ

The above operation gives rise to two unknown boundary Fourier coefficients a1111
nð1Þ and

a1111
nð2Þ defined as

a1111
nð1Þ ¼ 4

ab

Z a

0

1u1;1ða; a2; tÞ �1u1;1ð0; a2; tÞ
 �

sin
mpa2

b

� �
da2; ð18aÞ

a1111
nð2Þ ¼ � 4

ab

Z a

0

1u1;1ða; a2; tÞ þ 1u1;1ð0; a2; tÞ
 �

sin
mpa2

b

� �
da2: ð18bÞ

Substitution of the assumed functions and their derivatives into the governing system of
partial differential equations, given by equations (7–9) and boundary conditions, given by
equation (10) finally yields, on equating the coefficients of cosðamx1Þsinðbnx2Þ;
sinðamx1Þcosðbnx2Þ; etc., 10mn+5m+5n+1 simultaneous linear algebraic equations.
The details of this procedure, which is illustrated elsewhere for the static case (see, e.g.,
references [4, 6, 8]), are omitted here in the interest of brevity. The computation of the
eigenvalues (natural frequencies) is carried out utilizing the standard library of IMSL
software [14].
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4. NUMERICAL RESULTS AND DISCUSSION

In what follows, a two-layer [08/908] laminated cylindrical panel of square planform is
numerically investigated. Each of the laminae is assumed to be of the same thickness. A
computer program is developed to solve the eigenvalue problem described above. The
mode shapes (eigenfunctions) are extracted and plotted using the routine, SURFER. The
numerical results are obtained for the following boron/epoxy layer–material properties:
E1/E2=13
818, G12/E2=G13/E2=0
418, G23/E2=0
272, n12=n13=0
34, n23=0
34, K2

1 ¼
K2

2 ¼ 5
6
; where E1 and E2 are Young’s moduli along major and minor axes, respectively, of

a lamina. G12 is the surface-parallel shear modulus, while G13 and G23 are transverse shear
moduli in the a12a3 and a22a3 planes respectively. nij denote Poisson’s ratios. The
following normalized frequency term is defined for convenience:

li ¼ oia
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=ð10E2ÞÞ

p
=h; i ¼ 1; 2; 3; . . . ; ð19Þ

where oi; i=1, 2, 3,. . . , denotes the natural frequencies in numerical orders of magnitudes.
First, the accuracy of the present solution as applied to the antisymmetric cross-ply

cylindrical panel boundary-value problem under consideration is numerically ascertained
by studying the convergence characteristics of the computed natural frequencies
(eigenvalues). Various parametric studies such as dependence on R/a, a/h and m=n are
performed, a sampling of which is exhibited here (others will be made available to
interested readers upon request). Figures 2–4 present the lowest normalized natural
frequencies for moderately deep (R/a=10) cylindrical panels of square (b/a=1) planform
and a/h=10, 20, 50 respectively. In each case, a rapid convergence is achieved at or before
m=n=5. The lower natural frequencies, e. g., the lowest four, converge more rapidly (at
or before m=n=3) than the higher ones, such as the fifth, sixth and seventh. Similar trend
is also observed for much shallower (R/a=100) square cylindrical panels as shown in
Figures 5–7, the length-to-thickness ratios remaining the same as before. Convergence
plots for virtually flat (R/a=1000) antisymmetric cross-ply [08/908] cylindrical panels are
not included here in the interest of brevity of presentation. It may be remarked that these
results do not constitute a mathematically rigorous convergence proof, but merely
Figure 2. Convergence of seven lowest natural frequencies of a [08/908] moderately thick (a/h=10),
moderately deep (R/a=10) square cylindrical panel.



Figure 3. Convergence of seven lowest natural frequencies of a [08/908] moderately thick (a/h=20),
moderately deep (R/a=10) square cylindrical panel.

Figure 4. Convergence of seven lowest natural frequencies of a [08/908] thin (a/h=50), moderately deep
(R/a=10) square cylindrical panel.
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demonstrate satisfaction of the necessary (but not sufficient) condition for convergence,
which is acceptable in the engineering literature.

Figures 8 and 9 numerically address the main innovation of the present investigation,
which is concerned with the use of mixed type mutually orthogonal sets of double Fourier
series. These plots present convergence results for the first five normalized natural
frequencies of a [08/908] moderately thick (a/h=10) very shallow (R/a=100) square
cylindrical panel, with and without the second set of double Fourier series. It may be noted



Figure 5. Convergence of seven lowest natural frequencies of a [08/908] moderately thick (a/h=10), very
shallow (R/a=100) square cylindrical panel.

Figure 6. Convergence of seven lowest natural frequencies of a [08/908] moderately thick (a/h=20), very
shallow (R/a=100) square cylindrical panel.
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in Figure 8 that the second and third natural frequencies are too close to be distinguishable
because the panel is very shallow, and behaves more or less like a flat plate. These plots
clearly demonstrate the superiority of the mixed type double Fourier series over its single
set of double Fourier series counterpart, both in terms of rapidity and monotonicity of
convergence. For example, for the fundamental frequency computed using the mixed type
double Fourier series, that corresponds to the transverse mode shape, u3(11), the value at
m=n=3 is within 1
75% of the converged solution. The same is true for the second (equal
to the third) natural frequency, corresponding to the transverse mode shape, u3(12) (or
u3(21)), in which case the mixed series yields a value for m=n=3 within 0
3% of the
converged solution. The fourth numerically ordered frequency, which corresponds to the



Figure 7. Convergence of seven lowest natural frequencies of a [08/908] thin (a/h=50), very shallow
(R/a=100) square cylindrical panel.

Figure 8. Comparison of the first (*) and second/third (*) natural frequencies computed using the present
solution (}) with its single series counterpart (- - -) for a [08/908] moderately thick (a/h=10), very shallow
(R/a=100) square cylindrical panel.
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inplane mode, u1(11) and/or u2(11), exhibits even more spectacular result in that the
convergence is achieved using m=n=1. The fifth numerically ordered frequency,
corresponding to the transverse mode shape, u3(22), yields a value for m=n=3 within
1% of the converged solution. In contrast, the single series solutions for the same
frequencies seem almost flat-footed. Although they are able to capture the correct trend,
none of them computed using m=n=3 is within even 15% of their converged
counterparts.

The present results are compared with the available finite element solution [15] in
Table 1. These results are presented in order to validate the accuracy of the FEM results.
These FEM results could not be validated until now, because no analytical solution to the
problem existed in the literature. Getting FEM results are much easier than validating
them because of scarcity of available analytical solutions in the literature. A four-node
shear-flexible finite element is selected to compare the results with the present solution.



Figure 9. Comparison of the fourth (*) and fifth (*) natural frequencies computed using the present solution
(}) with its single series counterpart (}) for a [08/908] moderately thick (a/h=10), very shallow (R/a=100)
square cylindrical panel.

Table 1

Comparison of the present solution with the

finite element results [15] for a [08/908]
moderately thick (a/h=10), very shallow

(R/=100) square cylindrical panel

Natural Present solution
frequency

Finite element solution [15]

1 0
962
2 0
970
3 0
970
4 0
914
5 0
992
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Five lowest natural frequencies are compared for a moderately thick (a/h=10) very
shallow (R/a=100) panel of square planform (b/a=1). The two sets of results are
sufficiently close (within 4%) to validate the accuracy and robustness of the FEM results,
and also to lend added credence to the present solution procedure.

Contours depicting the mode shapes (or eigenfunctions) are plotted for moderately
thick (a/h=10) and very shallow (R/a=100) panels, and are shown in Figures 10–18. In
these plots, u3(mn) denotes the mode shape for transverse vibration with m=n=1, 2, 3 and
so on. The mode shapes give important insight into the dynamic response of the anti-
symmetric cross-ply [08/908] cylindrical panels under investigation. Figures 10–18, which
are contour plots, clearly depict the mode shape patterns, u3(11), u3(12), u3(21), u3(22), u3(23),
u3(32) and u3(33) respectively. Furthermore, as expected for a very shallow panel, the
contour plot pairs, u3(12) and u3(21), and u3(23) and u3(32) exhibit symmetry of patterns, that
can be obtained by rotation of � 908 from each other, because both transverse mode
shapes correspond to the same natural frequency. The same is not true for the contour
plots corresponding to the mode shapes, u3(13) and u3(31), shown in Figures 12 and 16,
which cannot be obtained by rotation of � 908 from each other, although both transverse



Figure 10. Mode shape, u3(11), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.

Figure 11. Mode shape, u3(12), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.
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Figure 12. Mode shape, u3(13), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.

Figure 13. Mode shape, u3(21), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.
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Figure 14. Mode shape, u3(22), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.

Figure 15. Mode shape, u3(23), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.
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Figure 16. Mode shape, u3(31), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.

Figure 17. Mode shape, u3(32), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.
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Figure 18. Mode shape, u3(33), for a [08/908] moderately thick (a/h=10), very shallow (R/a=100) square
cylindrical panel.
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mode shapes correspond to the same natural frequency. This is because these contour
plots correspond to ‘‘degenerate’’ modes that correspond to the combined action of
transverse and surface-parallel modes. For example, Figure 16 clearly exhibits the
combined influence of the transverse mode, u3(31) and the surface-parallel shear mode,
while Figure 12 depicts the combined effect of the transverse mode, u3(13) and a surface-
parallel extensional mode. For thicker panels, as has been shown earlier by Kabir and
Chaudhuri [7], surface-parallel modes are expected to play dominant roles except for the
fundamental frequency, which corresponds to the transverse mode, u3(11).

Figure 19 exhibits the effect of thickness on the computed seven lowest normalized
natural frequencies (eigenvalues) of antisymmetric cross-ply [08/908], moderately deep
(R/a=10) cylindrical panels of square planform. These natural frequencies generally
correspond to the mode shapes, u3(11), u3(12), u3(21), u1(11) (and/or u2(11)), u3(22), u3(13), u3(31),
although mode switches within the same numerically ordered frequency can be expected,
except for the case of the fundamental frequency, with different regimes of the a/h ratio.
This has been observed earlier in the case of angle-ply panels [7, 16]. Similar results for
very shallow (R/a=100) and virtually flat (R=a ¼ 1000) antisymmetric cross-ply [08/908]
square cylindrical panels are shown in Figures 20 and 21 respectively. The effects of shear
deformation, asymmetry of lamination, length-to-thickness ratio and shell curvature on
the computed natural frequencies are quite self-evident in these plots. These plots exhibit a
highly complex interaction of bending–stretching type coupling effect with those of
transverse shear deformation, rotatory inertias, surface-parallel inertias, and membrane
action due to shell curvature. These results show that the normalized natural frequencies
increase monotonically with the increase of length-to-thickness ratio. One major difference
between the dynamic response of a moderately deep shell (R/a=10) shown in Figure 19
and its very shallow counterparts (Figures 20 and 21) is that while in the former all the



Figure 19. Variation of natural frequencies with the aspect ratio, a/h, of a square, moderately deep (R/a=10)
cylindrical panel.

Figure 20. Variation of natural frequencies with the aspect ratio, a/h, of a square, very shallow (R/a=100)
cylindrical panel.

Figure 21. Variation of natural frequencies with the aspect ratio, a/h, of a square, virtually flat (R/a=1000)
cylindrical panel.
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seven numerically ordered natural frequencies are quite distinct except for very thick
panels (a/h�5), in the latter the frequencies corresponding to mode shapes, u3(12) (curves b)
and u3(13) (curves f ) are nearly identical to their counterparts, corresponding to mode
shapes, u3(21) (curves c) and u3(31) (curves g) respectively. It is also noteworthy that the
transverse shear deformation, which is generally opposed by the membrane action due to
the shell curvature and bending-stretching coupling, dominates in the thicker shell regime,
which shows up in the form of steep rises in the li versus a/h curves. For higher
frequencies, the region of this dominance extends further into relatively thinner panel
regime. As shown in Figure 20 and more so in Figure 21, the lower frequencies of relatively
flat panels reach their plateaus at or before a/h=40, which is in line with the behavior of a
thin plate. In contrast, the lower frequencies, including the fundamental one, of
moderately deep panels display an uncharacteristic rise, albeit a lot less pronounced,
even in the very thin panel regime (Figure 19). Unlike in the case of the flatter panels, the
membrane action due to shell curvature and surface-parallel inertias, which are, in turn,
coupled with rotatory inertias, interact with the bending–stretching coupling to produce
such behavior in the thinner moderately deep (R=a ¼ 10) panels.

5. CONCLUSIONS

An analytical solution to the problem of an antisymmetric cross-ply cylindrical panel
subjected to the SS2 type simply supported boundary condition is presented. Each
unknown is expressed in terms of two double Fourier series in which the second set is
orthogonal to the first, and represents the error term that may arise out of the presence of
discontinuity in the function or it first derivative at the boundary. Although the solution
procedure has been illustrated only for a specific shell geometry and lamination and a
specific boundary condition, the main idea behind it is general enough to be applicable to
any laminated shell problem subjected to any set of admissible boundary conditions.

The convergence characteristics of the computed natural frequencies demonstrate the
computational efficiency of the approach. Comparison of the present solution with its
single set of double Fourier series counterpart clearly demonstrates the superiority of the
mixed type double Fourier series over its rival, both in terms of rapidity and monotonicity
of convergence. Furthermore, comparison with available finite element solution not only
establishes the accuracy of the latter results, but also lends confidence to the present
solution.

The computed natural frequencies (eigenvalues) and mode shapes (eigenfunctions) give
important insight into the dynamic response of the cross-ply [08/908] cylindrical panels
under investigation. These results shed light on the highly complex interaction among the
effects of transverse shear deformation, bending–stretching type coupling, membrane
action due to shell curvature, rotatory inertias, surface-parallel inertias, etc. in the case of
antisymmetric crossply cylindrical panels. The numerical results thus presented can be
capitalized as bench-mark solutions for the future comparisons with approximate or weak
(integral) forms of solutions, such as finite elements and boundary elements (in the context
of FSDT). Extension to such other shell geometry as spherical panel and other boundary
conditions and laminations is currently under way, and will be published in a future paper.
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